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Abstract-Moisture and frost accumulation in a glass-fiber slab are analyzed, using a one-dimensional, 
transient, vapor diffusion model with phase changes and variable properties. The cold sink boundary is 
impermeable and subject to a temperature below the triple point of water while the opposing warm 
boundary is open to a convective moist air. The numerical results are presented for moisture/frost accumu- 
lation under various conditions. It is shown that the motion of the frozen boundary is primarily governed 
by thermal diffusion. The effects of moisture/frost accumulation on thermal performance are also discussed. 

1. INTRODUCTION 

HEAT AND moisture transport through insulation 
materials has drawn substantial attention among 

researchers because of the many practical applications 
for energy management for building and refrigerated 
envelopes. Extensive studies [l-3] have been con- 
ducted to analyze simultaneous heat and mass transfer 
for various systems, along with a few experimental 
efforts [4, 51. In recent years, condensation effects in 
insulation have been investigated rigorously [6, 71 for 
applied temperature ranges above the freezing point. 
However, there are many applications in which the 
cold side temperature of an insulation layer can be 
below the triple point of water. In these applications, 
condensed water inside the insulation (if any) may 
exist as frost in places where the temperature is below 
the freezing temperature. Therefore, it is possible that 
the dry, wet, and frozen regions coexist in the slab. 
Little effort has been made so far to analyze the heat 
and moisture transfer processes with both con- 
densation and frosting effects in insulation materials, 
although some studies on frosting and freezing pro- 
cesses in porous media may be related [8-lo]. 

It is understood that the main mechanisms involved 
in heat and moisture transfer in fibrous insulation 
with no air infiltration due to air pressure difference 
(e.g. a vapor retarder is used), are : 

l vapor diffusion and natural convection in the gas 
phase due to density variation induced by temperature 
and vapor concentration gradients; 

l phase changes such as condensation (or evap- 
oration), freezing (or thawing), and ablimation (or 
sublimation). 

Moisture and frost accumulation leads to an alter- 
ation of the temperature field due to physical effects 
predicted by thermodynamic phase-equilibrium 
relations and also results in an increase in the effective 

thermal conductivity of an insulation material. These 
effects augment heat loss through insulation materials. 

In this study, the focus is on the analysis of transient 
and spatial variations of moisture/frost content as a 
result of temperature and vapor concentration gradi- 
ents across a typical fibrous slab and the augmented 
heat transfer due to phase change. The approach is 
similar to the study of Vafai and Sarker [6], who used 
the local volume average technique, which is modified 
in this study and applied to the case with temperature 
below the triple point of water. The wet-frozen 
boundary is found directly from the solution of the 
governing equations by the numerical method. It is 
this boundary that changes the distribution of moist- 
ure as compared to the case without frosting. For 
processes with only condensation effects, it has been 
reported [3] that when the time scale for the motion 
of the dry-wet boundary in porous media is much 
larger than the thermal diffusion time scale (which is 
only true for fairly wet media), the position of the 
moving boundary can be found from a quasi-steady- 
state solution. This may not be applicable to the cases 
with frosting and small moisture accumulation. We 
expect that for initially dry insulation and small Lewis 
numbers (defined by the ratio of the effective thermal 
and mass diffusivities), the position of the moving 
frozen boundary is primarily governed by thermal 
diffusion. This would lead to the exclusion of moving 
boundary conditions in our finite difference formu- 
lation. In order to justify this, a time scale for the 
motion of the boundary between the wet and frozen 
regions will be developed. 

2. ANALYSIS 

The problem is formulated using the local averaging 
technique. At any location in space z, a quantity .v is 
said to be ‘spatially averaged’ when it is defined as 

1593 



1594 Y.-X. TAO al 

NOMENCLATURE 

Bi Biot number, h, L/k& P density 

St,,, mass transfer Biot number, h,L/D.f,, z tortuosity 

I’,’ heat capacity at constant pressure 4 relative humidity. 
D mass diffusivity, dimensional 
DzCn effective vapor diffusivity. a:. D/z Subscripts 

I;0 Fourier number, c&~~*/L* a air 

jr,, enthalpy of vaporization C cold 

h,, enthalpy of fusion D diffusion 

/I,, enthalpy of sublimation f frozen region 

k thermal conductivity ref reference 

L characteristic length of the slab, S saturated 

dimensional 1 total 

m rate of phase change V vapor phase 

P pressure W wet region 

Q' heat flux ratio defined in equation (21) B liquid phase in wet region or ice phase in 

RV vapor gas constant frozen region 

t time .> i gas phase which consists of air and water 

T temperature vapor 

AT reference temperature difference, solid phase 

T$-T,* ; initial ; reference for non-dimensional 

Z coordinate axis. scales (Tables 1 and 2). 

Greek symbols Superscripts 

C& effective thermal diffusivity, k,,,/p,*cX - time average 

(-: volume fraction * dimensional. 

(1) 
matrix ; i.e. any moisture accumulation is caused by 

vapor diffusion only ; and (f) in the frozen region, 
frost does not exist as a self-porous medium. Assump- 

where V is the total volume of a small elementary 

control volume. A quantity in phase a is said to be 
‘intrinsic phase averaged’ when it is defined as 

(Jl), = ylTI) 
1 s 

Y. dV. (2) 
V,(l) 

One is referred to Whitaker’s work [I l] for the 

detailed derivation of the governing equations for gen- 
eral heat and mass transfer in porous media. In this 
study, the averaging symbols are omitted in order to 
simplify the notation. The equations for condensation 
and frosting in fibrous insulation are essentially the 
same as those in ref. [6] for the condensation problem 

with Peclet number equal to zero, except here the b 
phase is defined as the liquid phase in the wet region 
of the slab and as the second solid phase (ice) in the 
frozen region. 

The following assumptions are made to arrive at 
the governing equations : (a) the total gas phase (water 
vapor plus air) pressure in the insulation matrix is 
constant ; (b) the insulation material is homogeneous 
and isotropic ; (c) the insulation matrix solid-liquid- 
gas region and the solid-frost-gas region are close to 
local thermal equilibrium and as a consequence, only 
sublimation or ablimation is considered in the frozen 
region ; (d) the liquid is in the pendular state ; (e) no 
convective gas phase flow occurs in the insulation 

tions (a)-(c) have been used previously in the analysis 
of insulation materials [6,7] and assumptions (d) and 
(e) are based on the boundary and initial conditions 
considered in this study. Assumption (f) is justified 
for small amounts of frost accumulation which is true 

for diffusion controlled processes. 

2.1. Governing equations 

The following coupled, non-linear partial differ- 
ential equations (non-dimensionalized according to 
the definitions listed in Tables 1 and 2) are used to 
describe the transport phenomena : 

/J phase continuity equation 

gas dz’jiision equation 

energy equation 

where P, in equation (3) and P, in equation (5) may 
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Table 1. Dimensionless variables 

1595 

Table 2. Dimensionless parameters 

y’, PI p, P8 PI0 p; Pb PI0 p; I 
E%d& PBlPo* hff/c$AT* A T*R:dl~$o h&IR$AT* Ps*W/Pb h:,jc$AT h,*,/RfAT* AT*R:~dl~tto 

be replaced by P; and Pi, respectively, for the frozen 
region (see Table 2), and ti is the dimensionless mass 
rate ofphase change per unit volume. The constitutive 
equations are : 

volumetric constraint 

E,+Ejg+E, = 1 

thermodynamic relations 

Pa = Pt -Pv 

~a = PI, PIT 

pv = P,P,T 

and for saturation conditions 

where 

P = ~dpI+~BpJ9+~y(p”+Pa) 

cp = 
EC Pa‘4 + $I pa$ + Ey (cv pv -I- c, pa) 

P 

k,, = E,k, + Eska +ey 
k,p,+k,p, 

P”+Pa 

(10) 

(11) 

(12) 

(13) 

Also, in equation (lo), P10 may be replaced by P’,0 
for the frozen region. 

(6) 

(7) 

(8) 

(9) 

2.2. Computational procedure 
The problem is modeled as a porous insulation slab 

with impermeable and adiabatic vertical boundaries, 
as shown in Fig. 1 (a). The lower horizontal boundary 
is impermeable and subject to a cold temperature that 
may be below the triple point temperature of water, 
and the upper one is open to a convective moist air at 
a specified room temperature and humidity level. The 
boundary and initial conditions to complete the for- 
mulation are 

dT(z = 0, t) 

C3Z 
= -Bi[T, - T(z = 0, t)] (14) 

ap,(z = 0, t) 
i3Z 

= --Bi,[p, -p,(z = 0, t)] (15) 

T(z= 1,t) = T, (16) 

p&= l,t)=exp[-P’,0(~-&)]/(P8TJ, 

if .sa(z = 1) Z 10e6 

8P”(Z = 40 

3Z 
= 0, if ~(2 = 1) < 1O-6 (17) 

T(z, t = 0) = To (18) 

(19) 

&p(Z, t = 0) = 40. (20) 

In equation (17), Plo may be used instead of P;. if 
T, > 273.16 K. At the boundary of z = 0, the fol- 
lowing relation between the heat and mass transfer 
coefficients is used [5] : 

hm = (&)(“). 

a 

(~ 

8 Adiabatic T= T, Impermeable & Adiabatic 

pV s(T) -Saturation Values 

Distribution 

1 

FIG. 1. (a) Transient condensation and frosting in an insu- 
lation slab with prescribed boundary conditions. (b) The 
definition of three possible regions in the slab : governed by 

water vapor density. 
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In order to examine the thermal performance of the 
insulation slab, the following heat flux ratio is defined : 

i-&g) 
Q’ = A$ = ;_<“$ (21) 

co 

where Qc is the heat flux leaving the cold boundary 
and Qdl the heat flux leaving the cold boundary of the 
same insulation slab subject to the same boundary 
conditions except sg = 0 at any time and location. 

It has been reported that if sp < 10m6, water is in 
the adsorbed state, therefore vapor can no longer be 
considered in the saturation state [4, 6, 71. Based on 
this, the following three different regions are defined : 

Dry region : where sP < lo- 6, and only vapor and 
air exist in the pores of the slab. 

Wet region : where sp > lo-’ and T* > 273.16 K, 
and vapor, air, and liquid coexist. 

Frozen region: where .sg > 10e6 and T* < 273.16 
K, and vapor, air, and frost coexist. 

From these definitions, the boundary positions 
between the regions are easily found (Fig. l(b)). 
Depending upon the initial &bo used in the calculation, 
it may not be necessary for the above defined three 
regions to exist at the same time. As will be shown 
later, the approximation Ed > lo- 6 is accurate enough 
to describe the effect of moisture accumulation on the 
thermal performance of the insulation. It should be 
noted that physically, due to slight inhomogeneities 
in fibrous insulation, the wet-dry boundary or wet- 
frozen boundary cannot be a single line but has a 
finite volume. However, according to the local volume 
average technique, this fuzzy boundary ‘volume’ can 
be averaged and represented by a line (at a position zr 
or 2,). The definition for the moving frozen boundary 
implies that it is at a place where the temperature is 
273.16 K. This is true only when the motion of the 
boundary is dominated by thermal diffusion, which is 
the case in this study, as will be justified later in light 
of time scale discussion. 

The finite difference forms of equations (3)-(5) are 
derived using the implicit scheme with the backward 
difference for the time derivative. The central differ- 
ence form is used for internal nodes and the backward 
or forward difference used for the boundary nodes. 
The computational procedure is that, at each time 
step, the computed vapor density distribution is com- 
pared with the saturation ‘vapor density calculated 
from equation (10) at the corresponding temperature. 
If the actual vapor density in a region is larger than, 
or equal to, the saturation density, the new two-phase 
region (wet or frozen depending on temperature) is 
then determined for the next time step. For the dry 
region, ti was set to zero and equation (10) was not 
used. Equations (3)-(5) were solved for sP, T, and pV, 
respectively. For the wet region, pV was determined 
from equation (10). Equation (4) was used to solve 

Table 3. Physical data 

P: 53.2 kg me3 k: 0.762 W mm’ Km’ 
cf 840.7 J kg-’ K-’ p; 999.87 kg m-’ 
CC& 8.84 x lo-’ m* s- ’ CB 4200 J kg-’ K-’ 
D 2.39 x 10e5 mz s-’ 

0.037 W m- ’ K- I 
kB 0.57 W mm’ K ’ 

k,& p$ (ice) 917.0 kg mm ’ 
L 0.099 m c$ (ice) 1924 J kg- ’ Km ’ 
60 0.02 kpl (ice) 2.22 W m-’ K-’ 
T,* 293 K c* 
Tj 

Y 1882 J kg-’ K-’ 
293 K k: O.O247Wm-‘Km’ 

T2, ,., 273.16 K R?; 
ki 

461.89Jke-’ Km’ 
ht$ 2.50 x IO6 J kg-’ O.O227W;-‘K-l 
h,* l.67x105Jkgm’ c: 1005 Jkg-‘Km’ 
P: 2600 kg mm3 4 0.4-0.97 
C* 0 836.8 J kg-’ Km’ h, 12.0 W mm2 Km’ 

for +z, and equations (3) and (5) were solved for E,~ 
and T, respectively. For the frozen region, the ap- 
proach was basically the same as that for the wet 
region except the parameters P’,, Pk, and P’,,, were 
used in the pertinent equations. 

The accuracy of the wet-dry or wet-frozen bound- 
ary position depends on the selection of the time step 
and the grid size. Considering the balance between 
the accuracy, economy of computing time and the 
stability requirement, we chose At/(Az)’ < 2.25 with 
the grid size AZ = 0.02. For each time step, the differ- 
ence equations were solved using the underrelaxation 
iteration scheme. The solution is considered to be 
converged when the deviation of any variable from 
the last iterated value is within IO- ‘%. The physical 
data for fluids and the typical glass-fiber insulation 
slab used in modeling are summarized in Table 3. 

3. THE TIME SCALE FOR THE MOTION OF 

THE FROZEN REGION BOUNDARY 

The following approximations are used to describe 
the moving boundary conditions, assuming that the 
liquid is immobile : 

dpv dpv 
I I dz f dz w (22) 

(23) 

where 

By writing dT/dz terms in equation (23) as 

combining equations (22) and (23) and eliminating 
(dp,/dz),, we have 
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From equation (lo), and also considering that at 

the frozen-wet interface, T = Tre,-, we have 

dp, P; o - T,, dp, Pi,--T,r - 
dTr=m’ dT,=m . (26) 

Inserting equation (26) into equation (25) yields the 
following expression for the moving boundary speed : 

(-z)=(-$& 

’ 
(P, o - Tmd W’, o - Tredk:t~ - 1 

(p I o - Tref)MPs T~PkPp W + 1 1 ’ (27) 
The quantity inside the right-hand bracket of the 
above equation is of the order of unity for water vapor 
diffusion in frost with small liquid or frost deposits 
and Lewis number greater than 0.01. Therefore, the 
dimensionless time scale for the motion of the frozen 
region boundary can be found from equation (27) 

where ApV = pa -p,(T,), and CPr is a time averaged /I 
phase volume fraction at the moving boundary. 

The dimensionless time scale shown in equation 
(28) is nothing more than the ratio of the time scales 
for the motion of the frozen region boundary and for 
heat diffusion ; i.e. 

(29) 

Likewise, the ratio to the mass diffusive time scale is 

(30) 

If we follow the similar procedure in deriving equa- 
tion (25) by eliminating (dp,/dz), instead of (dp,/dz),, 
tr may also be written as 

Equations (28)-(31) indicate that the time scale for 
the motion of the frozen region boundary is pro- 
portional to the time averaged liquid content at the 
boundary and inversely proportional to the vapor 
concentration gradient across the slab, a function of 
the ambient air humidity level and the cold boundary 
temperature. Equation (31) gives an alternative ex- 
pression for tf and shows that tf is proportional to 
the length of the wet region (zf-z,) (see Fig. 1). 
The ratio of t, to the thermal diffusive time scale is 

proportional to the Lewis number defined in equation 
(22), while the ratio of tr to the mass diffusive time 
scale is independent of Le. As will be shown later, for 
many cases where vapor diffusion is the dominant 
mode for moisture migration, aP and Le are normally 
small ; therefore the right-hand side of equation (29) 
is of the order of unity, which means the time scale 
for the moving boundary is essentially of the same 
order as that for thermal diffusion. This allows us to 
simply determine the moving frozen boundary pos- 
ition from the temperature profile and reduce the 
complexity of the problem. The relations between the 
time scales derived above will be also used to discuss 
the quasi-steady-state behavior of the transport 
processes. 

4. RESULTS AND DISCUSSION 

The main objective of this phase of the study is to 
find the distributions of moisture accumulation with 
the presence of a moving frozen (frost) region, and the 
effect of this accumulation on thermal performance of 
the insulation. In order to achieve this, three main 
parameters were varied : the ambient relative humid- 
ity, 4, the initial liquid volume fraction, spO, and the 
cold temperature, T,. In all examples discussed 
below, the ambient temperature is kept at 293 K and 
the initial temperature is the same as the ambient 
temperature. 

4.1. Moisture andfrost accumulation 
4.1.1. Case study. Figures 2 and 3 show the dis- 

tribution of py, T, ti, and 4, with T,* = 253 K and 
cso = lo-’ and 10-3, respectively. Depending on the 
initial agO greater or less than lo-‘, the vapor density 
distributions behave differently, which governs the 
different stages in the diffusion process. 

(a) sB,, < 10e6 (Fig. 2) 
Three distinguishable periods are observed : 

Dry period. No frost or liquid condensation occurs 
in this period ; i.e. ti = 0. The vapor density at any 
position increases due to the inward vapor diffusion 
caused by the difference in vapor concentration be- 
tween the ambient and inside the matrix. Heat and 
mass transfer are decoupled ; therefore, the water 
vapor concentration increases due to the negative 
vapor concentration gradient. This period is normally 
very short (PO < 0.005, Fig. 2(a)). 

Moving freezing front period. After the vapor den- 
sity is increased above the saturation density, con- 
densation occurs, which always takes place at the cold 
boundary first. When the cold temperature is below 
273.16 K, frost immediately starts to form and the 
freezing front moves towards the warm side. At the 
initial stage of this period, there is no wet region in 
the slab (see position (A) in Fig. 2(c), denoting the 
boundary position between the dry and frozen 
regions). After inward moving of the freezing front 
results in further decrease in the temperature in the 
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warm portion of the slab, condensation begins to take 
place near the freezing front. The three different phase 
regions can be seen in Fig. 2(c) : the boundary pos- 
itions were denoted by (B) (wet-frozen) and (C) (dry- 
wet) for Fo = 0.1384, and similarly by (D) and (E) 
for Fo = 0.3230. In the wet and frozen regions, mass 
transfer is coupled with heat transfer. The vapor den- 
sity is no longer determined only by the mass diffusion 
process. Since the vapor density reaches its saturation 
value in the phase change regions, a decrease in tem- 
perature with time due to thermal diffusion results in a 
decrease in vapor density. In turn, the thermal energy 
released (or consumed) by phase changes affects the 
temperature distribution. As compared to the dry 
period, the coupling of heat and mass transfer leads 
to an inverse change in vapor density, i.e. the increase 
with time in the dry period and decrease in the moving 
freezing front period. This can be seen from Fig. 2(a) 
where Fo z 0.005 is the turning point for the change 
of the vapor density. 

Quasi-steady-state period. The distributions in Fig. 
2 show that a quasi-steady state is reached when tem- 
perature, vapor density and boundary position seem 
unchanged relative to the significant change in the 
previous periods. The asymptotic behavior in tem- 
perature and vapor density with respect to time indi- 
cates the saturation of the transient thermal, as well 
as mass, diffusion process. However, ep still increases 
with time, although at a very low rate, due to a non- 
zero distribution in rir and the impermeable boundary 
at the cold side of the slab. The quasi-steady-state 
behavior allows us to estimate the moisture/frost 
accumulation in the quasi-steady-state period, using 
the following equation : 

For the example shown in Fig. 2, ]riz],, z 0.012 near 
the wet-frozen boundary. If we assume F+/E = 0.1 is 
the criterion for water to be mobile, then the required 
time before the motion of water appears, is approxi- 
mately 504 h or about 21 days. This means that mois- 
ture/frost accumulation is normally small under the 
diffusion-only mode. 

(b) E,,,, > 10m6 (Fig. 3) 
This condition simulates a practical insulation slab 

which has absorbed a certain amount of moisture due 
to various factors (air leakage through the wall joints, 
for instance), and is then subjected to a cold tem- 
perature on one side. The slab is not dry initially 
according to the definition. Therefore, the vapor den- 
sity is assumed to obey thermodynamic relation (10) 
at the initial temperature. This means that there is no 
dry period like that in Case (a). The freezing front 
immediately starts to move inward. In the warm por- 
tion of the slab, evaporation takes place first due to a 
favorable vapor density distribution as shown in Figs. 
3(a) and (c). There is only a narrow dry region con- 
fined near the surface to the moist ambient environ- 
ment throughout the process (the size of the dry region 

depends on the ambient air humidity level ; the exam- 
ple shown in Fig. 3 is for 4 = 0.40). As shown in Fig. 
3(d), evaporation results in a lower sP in the wet region 
than the initial liquid volume fraction Ebb. The move- 

ment of the wet-frozen boundary, vapor diffusion and 
ablimation cause an increase in ag in the frozen region. 
This indicates most of the internally evaporated 
moisture migrates towards the cold region under a 
thermal gradient before the process reaches the quasi- 
steady state. Except for these differences, the whole 
process is essentially the same as the moving boundary 
and quasi-steady-state periods in Case (a). 

4.1.2. Comparison to the case with no jLosting effects. 
In Fig. 4, the result for the cold temperature above 
the triple point is shown. The boundary conditions 
used are the same as those reported in ref. [S]. Their 
measured quasi-steady-state temperature distribution 
is also plotted in Fig. 4(a), which shows a good agree- 
ment. The ep distribution for this case is shown in 
Fig. 4(b). There is a significant difference in moisture 
accumulation between the process with (for example, 
Fig. 2(d)) and without frosting. Moisture is mostly 

0.5 
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0 0.25 0.5 0.75 1 

10 

7.5 

t 0 
_ 5 
Q cr) 

2.5 

[5] This study 0 

Z 

(-4 

+ 
0.70 0.96 ,'?J 

- - 0.10 
___ -__ 0.46 
- . ..- ----- , ,54 

(b) 
FIG. 4. (a) The quasi-steady-state temperature distribution 
with the same condition as ref. [Sl for a condensation only 
process. (b) The typical E,, distribuiions under the same con- 
ditions as in (a) : Q,, = 10m7, T,* = 279.8 K, 7.: = 306 K, 

4 = 0.96, ~3~~ = 53 kg mm ‘, and L = 66 mm. 
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accumulated near the cold boundary for the process 
of condensation only, while in the process with a 
frozen cold temperature, the maximum accumulation 
takes place at the boundary between the frozen region 
and the wet region. This is because the maximum 
condensation rate is at the boundary when the process 
reaches a quasi-steady state. From equation (4), it can 
be seen that the discontinuity of the vapor density 

gradient causes a large curvature in the pV curve ; i.e. 
the spatial second derivative of pV near the wet-frozen 

boundary causes the high rate of phase change, ti. 
Therefore, through the ,0 phase continuity equation 

(3), a maximum moisture accumulation, as well as a 
discontinuity in c,,, occurs at the boundary between 
the wet and frozen regions. Since only a small vapor 
diffusion flux goes in the frozen region after the quasi- 

steady state is reached, the wet--frozen boundary acts 
as a cold surface shifted into the slab by the distance 
(I -q), as it can be seen that the distribution of sic in 
the wet region (Fig. 2(d)) shows a similar trend to 
that shown in Fig. 4(b). Generally, the wet-frozen 

boundary condition is controlled by the thermo- 
dynamic relation (10) which is basically the phase 
equilibrium behavior of water near the triple point. 

The discontinuity phenomenon is primarily due to the 
difference between heat of condensation and ablim- 
ation in equation (10) (the parameters P,,, and P’,“). 

4.2. The dry, wet andfrozen region boundaries 
The major difference between the transport pro- 

cesses with frosting effect and those without it, is the 

presence of a frozen region in the insulation slab. 
in which the thermodynamic relation between tem- 
perature and vapor concentration governs their dis- 

tributions. Therefore, the size of the frozen region 
becomes important for determining the extent of the 
heat loss through the slab. Figure 5 shows the typical 
variations of the dry-wet boundary position, z,, and 

the wet-frozen boundary position, zl, with respect to 
the Fourier number. For the slab in the initially dry 

condition (Q,, < 10 -‘), the wet region develops in a 

1 

0.6 

0.6 

ru 

0.4 

0.2 

0 

=w 2, r; (K) 
- - 243 
--- --- 253 _..._ - _.._ 263 

_.-...-...-..._ . . . . 

I I I 

relatively short period (Fig. 5(a)). The position of the 
dry-wet boundary for the initially wet slab depends 
on the ambient relative humidity (0.97 in Fig. S(b)), 
which imposes drying effects on the slab. The frozen 
boundary position is strongly dependent of the cold 

temperature, and is also a function of the initial liquid 
content. This agrees with the time scale analysis in 
equation (28). The time needed for moving of the 
frozen boundary for the slab at a lower cold tem- 
perature is shorter than that for the slab at a higher 

T,. Therefore, the slab with lower T, has a larger 
frozen region, as shown in Fig. 5(a). On the contrary, 

the influence of the initial liquid content on the frozen 
region length at the quasi-steady state is insignificant, 

although Fig. 5(b) shows that the time to reach the 
quasi-steady state for &PO = IO * is slightly longer 
than that for Ed” = 10 3. This is because that, for 
the ranges of .slrO considered in these examples, the 
averaged liquid contents at the wet-frozen boundary 
are of the same order, therefore. the time scales for 
the motion of the frozen boundary in these cases are 

also of the same order (see equation (28)). It should 
be noted that in this study for typical glass-fiber insu- 
lation, the Lewis number is about 0.02, and for the 

range studied, the diffusive time scale ratio t,- is not 
much larger than 1 (approximately 2-9). This means 
for the diffusion processes with initially dry states 
or small, initial liquid adsorption, and small Le, the 

motion of the interface cannot be decoupled from 
thermal diffusion. However, this decoupling might 
be possible for the case with a larger Le and larger 
moisture/frost accumulation [3]. 

The length of the wet region is also an important 
scale that affects the distributions of all parameters in 
the slab. From equations (28) and (31), we have 

(zl._ z,) _ ,r~_-;;(T7,1.~ (32) 
I \ ‘Old 

which indicates that, for a given cold boundary tem- 
perature, an increase in the ambient relative humidity 
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FIG. 5. The time variation of the boundary positions z, and zf: (a) at different T,* for sgO = lo-~‘, (b) at 
different sgO for r,* = 253 K, C$ = 0.97, and (c) the lengths of the wet and frozen regions under different 

ambient relative humidities for sl10 = lo- ‘. 
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FIG. 6. The time variation of heat flux ratio at different 
humidity levels : 680 = lo-‘, T,* = 253 K. 

results in an increase in the size of the wet region. 
Also, under the high ambient relative humidity, the 
trend of the increase in the wet region size with the 
cold temperature becomes more pronounced, which is 
supported by the numerical results shown in Fig. 5(c). 

4.3. Thermal performance 
4.3.1. Effect of relative humidity. A calculation is 

carried out for the slab with an initially dry condition 
and otherwise the same boundary conditions, but sub- 
ject to different ambient relative humidities. The 
obtained heat flux ratio (defined in equation (21)) is 
shown in Fig. 6. An increase in ambient humidity 
results in an increase in Q’. This is because the process 
is basically vapor-diffusion dominated. There is an 
approximately 23% increase in Q’ at the quasi-steady 
state as relative humidity increases from 0.40 to 0.97 
for the slab that is initially dry. If the slab is initially 
wet (i.e. &PO > 10-6), there will be more evaporation 
near the surface open to the ambient when the ambient 
humidity is at a low value. This drying effect on reduc- 
ing moisture accumulation may lessen the heat loss. 
It should be noted that, for those examples shown in 
Fig. 6, the time to reach quasi-steady state is different 
due to the difference in the overall mass transfer poten- 
tial (vapor concentration gradient across the slab). 

4.3.2. Effect of initial liquid volume fraction. Figure 
7 shows the variation of Q’ with the Fourier number 
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FIG. 7. The time variation of heat flux ratio at different caO : 
T,* = 253 K, $ = 0.97. 

at different initial liquid content with otherwise the 
same conditions. The varying of the initial liquid vol- 
ume fraction only changes the transient behavior, but 
does not affect the quasi-steady-state values for 
&B0 < lo-‘. In the transient period (8’0 < 0.35), the 
initially wet slab has a decrease in heat loss due to 
internal evaporation. When the quasi-steady state is 
reached, those two cases shown in Fig. 7 approach 
one asymptote. This can be explained by means of the 
behavior of the moving boundaries of phase change 
for these processes shown in Fig. 5(b). The wet-frozen 
boundary positions are basically the same despite the 
different initial liquid contents. This implies that, as 
long as the initial liquid content is not large enough to 
cause the change of the quasi-steady-state boundary 
position, the temperature fields remain the same. 
However, for &Po = lo-’ in Fig. 7, a significant 
increase in Q’ can be seen. This is due to an increase 
in effective thermal conductivity, resulting from the 
large liquid/frost contents in the slab (see equation 
(13)). The above observation leads to two important 
messages : (a) the approximate value 1 O- 6 of sg for 
the dry-wet region criterion is a good assumption, in 
that a slight change of this value will not affect the 
results significantly, and (b) when the liquid/frost vol- 
ume fractions are greater than 0.01, additional heat 
loss due to the increase in the effective thermal con- 
ductivity becomes significant. 

4.3.3. Effect of cold temperature. Figure 8 shows the 
quasi-steady-state Q’ as a function of T, for different 
4 at given ambient temperature and heat transfer 
coefficient. As T, is above the triple point temperature 
of water, condensation effects become important 
when C$ > 0.70, and Q’ increases as T, decreases. For 
the processes with both frosting and condensation 
effects, i.e. T,* < 273 K, Q’ continues to increase as 
Tz decreases for C$ between 0.40 and 0.90. For very 
high relative humidity (e.g. 4 = 0.97) a slight decrease 
in Q’ is found as T,’ decreases, which implies that 
there exists a transition relative humidity (say about 
0.90), for which Q’ might be independent of T,*. This 
may be due to the resultant effect from both the frozen 
region length and effective thermal conductivity. The 
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FIG. 8. The effect of cold temperature Tz on the quasi-steady- 
state heat flux ratio for different ambient relative humidities : 

Ep = lo-‘. 
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length of the frozen region directly affects the tem- 
perature gradient and its increase reduces the heat 
flux. In the meantime, the effective thermal con- 
ductivity increases as moisture/frost contents increase, 
which results in an increase in Q’. Therefore, for high 
humidity cases, the dominant factor that influences 
the Q’-Tc behavior is the temperature gradient in the 
frozen region, which decreases with T,; while for low 
humidity cases (4 < 0.85), the increase in keff due 
to frost accumulation dominates, which explains the 
increase in Q’ with the decrease in T,. 

By inspection of Fig. 8, it can be concluded that for 
4 < 0.40, no significant effects of condensation or 
frosting on the heat loss through the insulation slab 
exists under quasi-steady-state conditions. The insu- 
lation behaves like a dry material even though the 
cold temperature drops well below 273 K. Con- 
densation and frosting effects would lead to a 
maximum 3&40% increase in heat loss. This suggests 
that as long as the basic mode for moisture transport 
inside an insulation slab is vapor diffusion, the effects 
of liquid/frost accumulation on thermal performance 
is not significant. This confirms the importance of 
using a good vapor retarder to minimize air infil- 
tration. It should be mentioned that since the trend in 
Q’-Tz for the process with condensation and frosting 
is different than the process with condensation only 
(r, > 273 K), theoretically, the curve shown in Fig. 
8 may not be continuous at the temperature which 
distinguishes between the two processes. 

5. CONCLUSIONS 

The following conclusions may be drawn for a typi- 
cal glass-fiber insulation slab : 

(I) After the process reaches a quasi-steady state, 
the maximum moisture accumulation occurs near the 
boundary between the frozen and wet regions, which 
is unlike the process without frosting that has the 
maximum accumulation always near the cold imper- 
meable boundary. 

(2) As long as liquid is in the pendular state, the 
initial liquid volume fraction Ed,, does not substantially 
affect the temperature field in the insulation slab, but 
would cause a significant increase in the effective ther- 
mal conductivity for agO > 0.005; therefore, results in 
an increase in Q’, 

(3) The frost accumulation results in an increase in 
the heat flux ratio, Q’, as compared to the process 
when only condensation takes place, if the ambient 
relative humidity is approximately above 0.40. 

(4) For a moderate ambient humidity level 
(0.40 < 4 < 0.90) and otherwise the same boundary 
and initial conditions, a slab subject to a lower sub- 
freezing temperature has a larger frozen region length 
and larger heat flux ratio, Q’. A slab, with one side 
open to a moist air close to 100% relative humidity, 
may have a smaller heat flux ratio as its cold boundary 
temperature (below 273 K) decreases. 
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TRANSFERT VARIABLE DE CHALEUR ET DE MASSE AVEC CHANGEMENT DE 
MASSE DANS UNE COUCHE ISOLEE: EFFETS DU GEL 

R&urn&-L’humidite et I’accumulation de gel dans une couche de fibre de verre sont analysCes en utilisant 
un modile monodimensionnel, de diffusion variable de vapeur avec changement de phase et propri&tCs 
variables. La frontitre de puit froid est impermtable et fix&e $ une tempt?rature infkrieure au point triple 
de l’eau tandis que la paroi oppoke chaude est ouverte $ une convection d’air humide. Les rCsultats 
numCriques sont prCsent&s pour I’accumulation d’humiditt/de gel dans des conditions varibes. On montre 
que le mouvement de la frontitre gel&e est principalement gouvernk par la diffusion thermique. On discute 

aussi les effets de ces accumulations sur la performance thermique. 

INSTATIONARE WARME- UND STOFFOBERTRAGUNG MIT PHASENWECHSEL IN 
EINER ISOLIERSCHICHT-REIF-EFFEKTE 

Zusammenfassung-Mit Hilfe eines eindimensionalen instationiren Modells fiir die Dampfdiffusion mit 
Phasenwechsel und variablen Stoffeigenschaften wird die Feuchtigkeits- und Reifansammlung in Fiber- 
glasschichten analysiert. Die Begrenzung an der kalten Seite ist undurchkissig und wird auf einer Tem- 
peratur unterhalb des Tripelpunkts von Wasser gehalten, wlhrend die warme Grenzflgche durchlissig ist 
und von feuchter Luft iiberstriimt wird. Die Ansammlung von Feuchtigkeit und Reif wird fir unter- 
schiedliche Bedingungen numerisch berechnet. Es zeigt sich, da0 die Bewegung der Gefrierfront haupt- 
sCchlich durch WBrmeleiteffekte bestimmt wird. Die Einfliisse der Feuchtigkeits-/Reif-Ansammlung auf 

das thermische Verhalten wird ebenfalls untersucht. 

HECTAIjMOHAPHbIti TElTJIO- W MACCOITEPEHOC llPM @A3OBbIX l-IEPEXO&G B 
ki3OJISI~kfOHHO~ IUIACTHHE: 3cPcPEKTbI HAMEP3AHRII 

AooTu0le-c wnonb30nawieM orulobfepeoii iienaxuioHapHol ~one~ni ns41Qy3AA napa npsi (P~~OBOM 
nepexone H nepehteintbm Tenn0t#wwiwcurx cBoiicreax arwni3HpywTcx Haronnetwe Bnara H wex B 
nnacrme H3 crex.noBonoxHa. rpa~w croria xonona XanfleTcs HenpommaeMoti H HaxomHTcn upa Tehf- 
nepaType Htixce TPO~%HO~~ TOYLH BOW, B TO eperdn xafi npoTHBonono2zias Harperan rpawfqa noanep- 
nceHa nekcrmir0 KOHB~KT~~BHO~O nna*Horo eo3nyxa. ~T~HB~JJJU~JI wicneHA~e pesynbrarar wn 
HaaonneHnx Bnar@iiien B pa3nwixiarx ycnoearx. ITorwaHo, wo nepeMeureHAe rpw sahfopamsiea- 
win npewqwcreeti~o onpe~ennercn nepetwcohf Tenna. 06cmaewn Tame wnisrnie Haxonnemn 

BnarH/nHex ifa Iw.noa30nn~owrbre xapaxrepncrtsrrr. 


